THOMAS WHITHAM SIXTH FORM

GCSE Further

Mathematics

Revision Guide

S J Cooper

The book contains a number of worked examples covering the topics needed in the Further Mathematics Specifications. This includes Calculus, Trigonometry, Geometry and the more advanced Algebra.

Algebra

- Indices for all rational exponents
$a^{m} \times a^{n}=a^{m+n}, a^{m} \div a^{n}=a^{m-n} \quad, \quad\left(a^{m}\right)^{n}=a^{m n} \quad, \quad a^{0}=1$,
$a^{\frac{1}{2}}=\sqrt{a}, \quad a^{\frac{1}{n}}=\sqrt[n]{a}, \quad a^{-n}=\frac{1}{a^{n}}, \frac{1}{a^{-n}}=a^{n}$,
$\left(\frac{a}{b}\right)^{-n}=\left(\frac{b}{a}\right)^{n}$
$a^{m / n}=\sqrt[n]{a^{m}}=(\sqrt[n]{a})^{m}$

Example $\quad 8^{\frac{1}{3}}=\sqrt[3]{8}=2 \quad$ Example $9^{-\frac{1}{2}}=\frac{1}{9^{\frac{1}{2}}}=\frac{1}{\sqrt{9}}=\frac{1}{3}$
Example $\quad x^{\frac{2}{3}}=4 \Rightarrow\left(x^{\frac{2}{3}}\right)^{\frac{3}{2}}=4^{\frac{3}{2}} \Rightarrow x=(\sqrt{4})^{3}=\underline{8}$

Example Simplify $2 x^{-1} \times(3 x)^{2} \div 6 x^{3}$

$$
2 x^{-1} \times(3 x)^{2} \div 6 x^{3}=\frac{2}{x} \times 9 x^{2} \times \frac{1}{6 x^{3}}=\frac{18 x^{2}}{6 x^{4}}=\frac{3}{x^{2}}
$$

- Quadratic equations

$$
a x^{2}+b x+c=0
$$

Examples
(i) $4 x^{2}=9$
(ii) $4 x^{2}=9 x$
(iii) $4 x^{2}=9 x-2$
(i)
(ii)
(iii)

$$
\begin{array}{lll}
x^{2}=\frac{9}{4} & 4 x^{2}-9 x=0 & 4 x^{2}-9 x+2=0 \\
\therefore x= \pm \frac{3}{2} & x(4 x-9)=0 & (4 x-1)(x-2)=0 \\
& \therefore x=0 \text { or } x=\frac{9}{4} & \therefore x=2 \text { or } x=\frac{1}{4}
\end{array}
$$

Example Solve (i) $2 x^{2}+x-5=0$ using the method of CTS
(ii) $5 x^{2}-7 x+1=0$ using the formula.
(i) $2 x^{2}+x-5=0$

$$
\begin{aligned}
x^{2}+\frac{x}{2} & =\frac{5}{2} \\
x^{2}+\frac{x}{2}+\left(\frac{1}{4}\right)^{2} & =\frac{5}{2}+\left(\frac{1}{4}\right)^{2} \\
\left(x+\frac{1}{4}\right)^{2} & =\frac{5}{2}+\frac{1}{16} \\
\left(x+\frac{1}{4}\right)^{2} & =\frac{41}{16} \\
x+\frac{1}{4} & = \pm \sqrt{\frac{41}{16}} \\
x & =-\frac{1}{4} \pm \sqrt{\frac{41}{16}} \\
x & \approx 1.35,-1.85
\end{aligned}
$$

- Simultaneous equations

Example Solve simultaneously $2 x+3 y=8, \quad y=x^{2}-x+2$
Here we substitute for y from the second equation into the first

$$
\begin{aligned}
& 2 x+3 y=8 \quad \therefore 2 x+3\left(x^{2}-x+2\right)=8 \quad \therefore 3 x^{2}-x-2=0 \\
& \therefore(3 x+2)(x-1)=0 \quad \therefore x=-\frac{2}{3}, 1
\end{aligned}
$$

when $x=-\frac{2}{3}, y=\frac{4}{9}+\frac{2}{3}+2=\frac{28}{9}$
when $x=1, y=1-1+2=2$

Solutions, $x=-\frac{2}{3}, \quad y=\frac{28}{9}$

$$
x=1, \quad y=2
$$

The geometrical interpretation here is that the straight line $2 x+3 y=8$ and the parabola $y=x^{2}-x+2$ intersect at points $\left(-\frac{2}{3}, \frac{28}{9}\right)(1,2)$

- Intersection points of graphs to 'solve' equations. There are many equations which can not be solved analytically. Approximate roots to equations can be found graphically if necessary.

Example What straight line drawn on the same axes as the graph of $y=x^{3}$ will give the real root of the equation $x^{3}+x-3=0$?
$x^{3}+x-3=0 \Rightarrow x^{3}=3-x$
\therefore draw $y=3-x$
As can be seen from the sketch there is only one real root α.

Example

Obtain the points of intersection of the circle $x^{2}+y^{2}=10$ and the line $y=2 x+1$

$$
\begin{aligned}
x^{2}+y^{2} & =10 \\
x^{2}+(2 x+1)^{2} & =10 \\
x^{2}+4 x^{2}+4 x+1 & =10 \\
5 x^{2}+4 x-9 & =0 \\
(5 x+9)(x-1) & =0 \\
\therefore x=-\frac{9}{5}, x & =1
\end{aligned}
$$

Using $y=2 x+1 \quad y=-\frac{7}{2} \quad, y=3$
Hence points are $\left(-\frac{9}{2},-\frac{7}{2}\right)$,

- Expansions and factorisation-extensions

Example

$$
\begin{aligned}
(2 x-1)\left(x^{2}-x+3\right)= & 2 x^{3}-2 x^{2}+6 x \\
& -x^{2}+x-3 \quad \text { Expanding } \\
= & \underline{2 x^{3}-3 x^{2}+7 x-3}
\end{aligned}
$$

Example $\quad x^{3}-9 x=x\left(x^{2}-9\right)=x(x-3)(x+3)$
Factorising

- The remainder Theorem

If the polynomial $p(x)$ be divided by $(a x+b)$ the remainder will be $p\left(-\frac{b}{a}\right)$

Example When $p(x)=2 x^{3}-3 x-5$ is divided by $2 x+1$ the remainder is $p\left(-\frac{1}{2}\right)=-\frac{1}{4}+\frac{3}{2}-5=\underline{\underline{-\frac{15}{4}}}$

Example Find the remainder when $4 x^{3}-3 x^{2}+11 x-2$ is divided by $x-1$.
$f(1)=4(1)^{3}-3(1)^{2}+11(1)-2=10 \quad \therefore$ remainder is 10

- The factor theorem Following on from the last item

$$
p\left(-\frac{b}{a}\right)=0 \Rightarrow a x+b \text { is a factor of } p(x)
$$

Example Show that $(x-2)$ is a factor of $6 x^{3}-13 x^{2}+x+2$ and hence solve the equation $6 x^{3}-13 x^{2}+x+2=0$

Let $p(x)=6 x^{3}-13 x^{2}+x+2$

$$
p(2)=6(2)^{3}-13(2)^{2}+(2)+2=48-52+2+2=0
$$

$\therefore(x-2)$ is a factor of $p(x)$

$$
\begin{aligned}
p(x) & =(x-2)\left(6 x^{2}-x-1\right) \text {...by inspection } \\
& =(x-2)(3 x+1)(2 x-1)
\end{aligned}
$$

\therefore Solutions to the equation are $x=2,-\frac{1}{3}, \frac{1}{2}$

Geometry

- Gradient/ intercept form of a straight line Equation

- Distance between two points

Given $\mathrm{A}\left(x_{1}, y_{1}\right) \mathrm{B}\left(x_{2}, y_{2}\right)$ then

$$
A B^{2}=\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}
$$

- Gradient of a line through two points... $A\left(x_{1}, \quad y_{1}\right)$ and $B\left(\begin{array}{ll}x_{2}, & y_{2}\end{array}\right)$
say

$$
m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}
$$

- Equation of a line through $\left(x^{\prime}, y^{\prime}\right)$ of gradient m

$$
y-y^{\prime}=m\left(x-x^{\prime}\right)
$$

Page 7

- Equation of a line through two points

Find the gradient using $m=\underline{\underline{x_{2}-x_{1}}}$ and use the formula as above.

- Parallel and perpendicular lines

Let two lines have gradients m_{1} and m_{2}

$$
\text { Lines parallel } \quad \Leftrightarrow m_{1}=m_{2}
$$

Lines perpendicular $\Leftrightarrow m_{1} m_{2}=-1 \quad$ or $\quad m_{1}=-\frac{1}{m_{2}}$

- Mid-point of line joining $\ldots A\left(x_{1}, y_{1}\right)$ and $B\left(x_{2}, y_{2}\right)$ coordinates are

$$
\left\{\frac{1}{2}\left(x_{1}+x_{2}\right), \quad \frac{1}{2}\left(y_{1}+y_{2}\right)\right\}
$$

- General form of a straight line
$a x+b y+c=0$. To find the gradient, rewrite in gradient/intercept form.

Example Given points $A(-2,3)$ and $B(1,-1)$ find
(a) distance $A B$
(b) the coordinates of the mid-point M of $A B$
(c) the gradient of $A B$
(d) the equation of the line through $C(5,2)$ parallel to $A B$
(a) $A B^{2}=(1+2)^{2}+(-1-3)^{2}=9+16=25 \quad \therefore \underline{\underline{A B=5}}$
(b) $M\left(-\frac{1}{2}, 1\right)$
(c) Gradient $A B=\frac{-1-3}{1+2}=\underline{\underline{-\frac{4}{3}}}$
(d) \quad Point $(5,2)$ Gradient $=-\frac{4}{3}$

Equation $\quad y-2=-\frac{4}{3}(x-5)$

$$
\begin{aligned}
& 3 y-6=-4 x+20 \\
& 3 y+4 x=26
\end{aligned}
$$

Example Find the gradient of the line $2 x+3 y=12$ and the equation of a perpendicular line through the point $(0,-4)$

Page 9

$2 x+3 y=12 \Rightarrow 3 y=-2 x+12 \quad \Rightarrow y=-\frac{2}{3} x+4$

$$
\therefore \text { gradient }=\underline{\underline{-\frac{2}{3}}}
$$

Gradient of perpendicular $=-\frac{1}{-\frac{2}{3}}=\frac{3}{\underline{2}}$
Equation

$$
\underline{\underline{y=\frac{3}{2} x-4}} \quad(y=m x+c)
$$

- The Circle

Angles in semicircle is 90°

Perpendicular to a chord from centre of circle bisects the chord.

- Centre, radius form of equation

$$
(x-a)^{2}+(y-b)^{2}=r^{2}
$$

Centre $(a, b) \quad$ radius $=r$
Example Centre (2,-1) radius 3 equation $(x-2)^{2}+(y+1)^{2}=9$

Example Centre $(1,2)$ touching $0 x$ Equation

$$
(x-1)^{2}+(y-2)^{2}=4
$$

- General form of equation

$$
(x-a)^{2}+(y-b)^{2}=r^{2} \quad \text { Circle centre }(a, b) \text { with radius } r
$$

To find centre and radius, use the method of CTS to change into centre/radius form.

Example $\quad x^{2}+y^{2}-2 x+3 y-3=0$

$$
\begin{aligned}
x^{2}+y^{2}-2 x+3 y-3 & =0 \\
\left(x^{2}-2 x\right)+\left(y^{2}+3 y\right) & =3 \\
\left(x^{2}-2 x+1\right)+\left(y^{2}+3 y+\left(\frac{3}{2}\right)^{2}\right) & =3+1+\left(\frac{3}{2}\right)^{2} \\
& \xlongequal{(x-1)^{2}+\left(y+\frac{3}{2}\right)^{2}=\frac{25}{4}}
\end{aligned}
$$

\therefore Centre $\left(1,-\frac{3}{2}\right) \quad$ radius $=\frac{5}{2}$

- Tangents

Angle between tangent and radius drawn to point of contact is 90°

Tangents drawn from extended

Example Find the equation of the tangent to the circle

$$
\begin{aligned}
x^{2}+y^{2}+2 x-4 y-5 & =0 \text { at the point } \mathrm{P}(2,1) \\
x^{2}+y^{2}+2 x-4 y-5 & =0 \\
\left(x^{2}+2 x\right)+\left(y^{2}-4 y\right) & =5 \\
\left(x^{2}+2 x+1\right)+\left(y^{2}-4 y+4\right) & =5+1+4 \\
(x+1)^{2}+(y-2)^{2} & =10
\end{aligned}
$$

\therefore Centre at $(-1,2)$, radius $\sqrt{10}$

Gradient $\mathrm{CP}=\frac{2-1}{-1-2}=-\frac{1}{3}$
\therefore gradient of tangent at $\mathrm{P}=3$

Equation

$$
\begin{aligned}
& y-1=3(x-2) \\
& y=3 x-5
\end{aligned}
$$

Calculus

- Differentiation by rule

y	$\frac{d y}{d x}$
x^{n}	$n x^{n-1}$
$a x^{n}$	$a n x^{n-1}$
$a x$	a
a	0

Examples

$$
\begin{aligned}
& \frac{d}{d x}(\sqrt{x})=\frac{d}{d x}\left(x^{\frac{1}{2}}\right)=\frac{1}{2} x^{-\frac{1}{2}}=\frac{1}{\underline{2 \sqrt{x}}} \\
& \frac{d}{d x}\left(\frac{4}{x}\right)=\frac{d}{d x}\left(4 x^{-1}\right)=-4 x^{-2}=-\frac{4}{x^{2}} \\
& \frac{d}{d x}\left(\frac{x}{2}\right)=\frac{d}{d x}\left(\frac{1}{2} x\right)=\frac{1}{\underline{2}} \\
& \frac{d}{d x}(10)=0 \\
& \frac{d}{d x}\left(3 x^{2}-x-5\right)=\underline{6 x-1}
\end{aligned}
$$

- Vocabulary and more notation

$\frac{d y}{d x}$ is the derivative of y (with respect to x)
$\frac{d y}{d x}$ is the differential coefficient of y (with respect to x).
Example $y=x^{3}-4 x^{2}+3 x-1$

$$
\frac{d y}{d x}=3 x^{2}-8 x+3
$$

Example $f(x)=\frac{x^{2}-2}{\sqrt{x}}=\frac{x^{2}}{\sqrt{x}}-\frac{2}{\sqrt{x}}=x^{\frac{3}{2}}-2 x^{-\frac{1}{2}}$

$$
\therefore f^{\prime}(x)=\frac{3}{2} x^{\frac{1}{2}}-\left(-\frac{1}{2}\right) 2 x^{-\frac{3}{2}}=\frac{3}{2} x^{\frac{1}{2}}+\frac{1}{x^{\frac{3}{2}}}=\frac{3}{2} \sqrt{x}+\frac{1}{x \sqrt{x}}
$$

- The gradient of a curve at any point is given by the value of $\frac{d y}{d x}$ at that point.

Example
Find the gradient at the point $P(1,5)$ on the graph of $y=x^{2}+2 x+2$. Hence find the equation of the tangent at P .

$$
\begin{aligned}
& y=x^{2}+2 x+2 \\
& \frac{d y}{d x}=2 x+2 \\
& \therefore \text { At } \mathrm{P}(1,5) \text { gradient }=4
\end{aligned}
$$

Tangent at P

$$
\begin{aligned}
& y-5=4(x-1) \\
& \therefore y=4 x+1
\end{aligned}
$$

- Stationary points on the graph of a function are points where the gradient is zero.

STATIONARY POINTS

MAXIMUM POINT

Minimum point

POINTS OF INFLEXION

TANGENT PASSING THROUGH THE CURVE

- To obtain coordinates of a SP. on the graph of $y=f(x)$
(i) Put $f^{\prime}(x)=0$ and solve for x.
(ii) If $x=a$ is a solution of (i) the SP will be $\{a, \quad f(a)\}$.
(iii) If $f^{\prime \prime}(a)>0$ there will be a minimum point at $x=a$

If $f^{\prime \prime}(a)<0$ there will be a maximum point at $x=a$

If $f^{\prime \prime}(a)=0$ there could be max or min or inflexion so the second derivative rule fails. Investigate the gradient to the immediate left and right of the stationary point. (see the + and signs on the diagrams in the previous section).

Example Find the stationary points on the graphs of
(i) $y=x^{2}+2 x+2$
(ii) $y=x^{3}-3 x+2$ and sketch the graphs.
(i) Here we have a quadratic function, which will have a true max or min.
$y=x^{2}+2 x+2$
$\frac{d y}{d x}=2 x+2$
$\therefore S P$ at $2 x+2=0$
i.e. at $x=-1$

i.e. at $(-1,1)$
$\frac{d^{2} y}{d x^{2}}=2>0$
$\therefore \mathrm{SP}$ is a minimum.
(ii) $y=x^{3}-3 x+2$
$\frac{d y}{d x}=3 x^{2}-3$
For SP $3 x^{2}-3 x=0$

$$
\begin{aligned}
\therefore \quad x^{2} & =1 \\
x & = \pm 1
\end{aligned}
$$

\therefore SPs at $(1,0)(-1,4)$

$$
\frac{d^{2} y}{d x^{2}}=6 x
$$

At $(1,0) \frac{d^{2} y}{d x^{2}}=6>0 \quad \therefore$ Min

At $(-1,4) \frac{d^{2} y}{d x^{2}}=-6<0 \quad \therefore$ Max
Check points $(0,2)(2,4)(-2,0)$
Note that the turning points are Local Max and Local Min
$\frac{d^{2} y}{d x^{2}}=6 x$

At $(1,0) \frac{d^{2} y}{d x^{2}}=6>0 \quad \therefore$ Min
At $(-1,4) \frac{d^{2} y}{d x^{2}}=-6<0 \quad \therefore$ Max

Check points $(0,2)(2,4)(-2,0)$

Note that the turning points are Local Max and Local Min

Trigonometry

- Trig ratios for $30^{\circ}, 60^{\circ}, 45^{\circ}$

$\sin 30=\cos 60=\frac{1}{2}$
$\sin 60=\cos 30=\frac{\sqrt{3}}{2}$
$\tan 60=\sqrt{3} \quad \tan 30=\frac{1}{\sqrt{3}}$

$\sin 45=\cos 45=\frac{1}{\sqrt{2}}$
$\tan 45=1$
- Trig ratios for all angles NB the CAST DIAGRAM

For the sign of a trig ratio
All positive in first quadrant
Sine (only) in second quadrant Etc...

Example Without using a calculator find
(i) $\cos 150^{\circ}$
(ii) $\tan 210^{\circ}$
(iii) $\sin \left(-240^{\circ}\right)$

(i)

$$
\begin{aligned}
\cos 150^{\circ} & =-\cos 30 \\
& =\underline{\underline{-\frac{\sqrt{3}}{2}}}
\end{aligned}
$$

(ii)

$$
\begin{aligned}
\tan 210^{\circ} & =\tan 30 \\
& =\frac{1}{\sqrt{3}}
\end{aligned}
$$

(iii)

$$
\begin{aligned}
\sin \left(-240^{\circ}\right) & =\sin 60 \\
& =\underline{\underline{\frac{\sqrt{3}}{2}}}
\end{aligned}
$$

- Trig of Scalene triangles

Sine rule

$$
\frac{a}{\sin A}=\frac{b}{\sin B}=\left(\frac{c}{\sin C}\right)
$$

Given AAS use it to find a second side
Given SSA use it to find a second angle (but take care to choose the angle size appropriately -it could be acute or obtuse).

Cosine rule

$$
\begin{aligned}
& a^{2}=b^{2}+c^{2}-2 b c \cos A \\
& \cos A=\frac{b^{2}+c^{2}-a^{2}}{2 b c}
\end{aligned}
$$

Both formulae with two more

Given SAS use it to find the third side
Given SSS use it to find an angle (no possible ambiguity here).
Example Triangle $P Q R$ has $P R=3 \mathrm{~cm}, Q R=7 \mathrm{~cm}$ and $Q \hat{P} R=36^{\circ}$
Find (i) $Q R$ using the cosine rule and then (ii) $P \hat{Q} R$ using the sine rule.

(i) $Q R^{2}=9+49-42 \cos 36=24.021 \ldots$

$$
Q R=4.901 . . \approx 4.90
$$

(ii) $\frac{7}{\sin P Q R}=\frac{4.901 . .}{\sin 36}$

$$
\sin P Q R=\frac{7 \sin 36}{4.901 . .}=0.8394 \ldots
$$

$\therefore P Q R=57.086 .$. or $P Q R=122.914$..

It can't be 57.08.. since R would be 86.92.. and would be the largest angle in the triangle, but R faces the smallest side so is the smallest angle. Hence $P Q R=122.91$

- Area " $\frac{1}{2} a b \sin C$ " rule given SAS

Area of triangle $=\frac{1}{2} a b \sin C$

- Graphs of trig functions (all periodic)

1. Graph of $y=\sin x$

2. Graph of $y=\cos x$

3. Graph of $y=\tan x$

Period 180

Vertical asymptotes

- Boundary values of trig ratios

Verify these from graphs

- Two important trig identities

$$
\frac{\sin \theta}{\cos \theta}=\tan \theta
$$

$$
\sin ^{2} \theta+\cos ^{2} \theta=1
$$

Example Given θ is obtuse and $\sin \theta=\frac{8}{17}$ find the values of $\cos \theta$ and $\tan \theta$.

$$
\begin{aligned}
& \sin ^{2} \theta+\cos ^{2} \theta=1 \therefore \cos ^{2} \theta=1-\sin ^{2} \theta \\
&=1-\frac{64}{289} \\
&=\frac{225}{289} \\
& \therefore \cos \theta=-\frac{15}{17} \\
& \tan \theta=\frac{\sin \theta}{\cos \theta} \quad \therefore \tan \theta=\frac{\frac{8}{17}}{-\frac{15}{17}}=\underline{=-\frac{8}{15}}
\end{aligned}
$$

NB Learn how to rearrange the identities

$$
\begin{array}{ll}
\sin \theta=\cos \theta \tan \theta & \cos \theta=\frac{\sin \theta}{\tan \theta} \\
\cos ^{2} \theta=1-\sin ^{2} \theta & \sin ^{2} \theta=1-\cos ^{2} \theta
\end{array}
$$

- Trig equations Remember that from your calculator $\sin ^{-1}, \cos ^{-1}$ and $\tan ^{-1}$ give the principal value (p.v.)

Example Solve the equations

(i) $\tan \theta=-1.5$ for $0^{\circ}<\theta<360^{\circ}$
(ii) $\sin 2 \theta=0.5$ for $-180^{\circ}<\theta<180^{\circ}$
(iii) $2 \cos ^{2} \theta=1-\sin \theta$ for $0^{\circ}<\theta<360^{\circ}$
(iv) $2 \sin ^{2} \theta=\sin \theta \cos \theta$ for $0^{\circ}<\theta<360^{\circ}$
(v) $\sin (\theta-80)=\frac{\sqrt{3}}{2}$ for $-180^{\circ}<\theta<180^{\circ}$
(i)

$$
\begin{aligned}
& \tan \theta=-1.5 \\
& \quad \theta \approx 124^{\circ}, \quad 304^{\circ}
\end{aligned}
$$

(ii) $\sin 2 \theta=0.5$.....first solve for 2θ for $-360^{\circ}<\theta<360^{\circ}$

$$
\begin{aligned}
& 2 \theta=30,150 ;-210,-330 \\
& \therefore \theta=15^{\circ}, 75^{\circ} ;-105^{\circ},-165^{\circ}
\end{aligned}
$$

(iii) (In this example, use $\cos ^{2} \theta=1-\sin ^{2} \theta$)

$$
\begin{aligned}
2 \cos ^{2} \theta & =1-\sin \theta \\
2\left(1-\sin ^{2} \theta\right) & =1-\sin \theta \\
2-2 \sin ^{2} \theta & =1-\sin \theta
\end{aligned}
$$

$2 \sin ^{2} \theta-\sin \theta-1=0$
$(\sin \theta-1)(2 \sin \theta+1)=0$
$\sin \theta=1$
$\theta=90^{\circ}$ or $\quad \begin{aligned} & \sin \theta=-\frac{1}{2} \\ & \theta=210^{\circ}, 330^{\circ}\end{aligned}$

$\therefore \theta=90^{\circ}, 210^{\circ}, 330^{\circ}$
(iv) Don't cancel out $\sin \theta$. Bring to LHS and factorise

$$
2 \sin ^{2} \theta=\sin \theta \cos \theta
$$

$$
2 \sin ^{2} \theta-\sin \theta \cos \theta=0
$$

$$
\sin \theta(2 \sin \theta-\cos \theta)=0
$$

$\therefore \sin \theta=0$ or $2 \sin \theta=\cos \theta$

$$
\begin{aligned}
& \theta=0^{\circ}, 180^{\circ} \sin \theta \\
& \cos \theta=\frac{1}{2} \\
& \tan \theta=\frac{1}{2} \\
& \theta \approx 27^{\circ}, 207^{\circ}
\end{aligned}
$$

$\therefore \theta=0^{\circ}, 180^{\circ}, 27^{\circ}, 207^{\circ}$
(v) $\sin (\theta-80)=\frac{\sqrt{3}}{2} \quad$ solve first for $-260^{\circ}<\theta<100^{\circ}$

$$
\begin{aligned}
& (\theta-80)=60^{\circ},-240^{\circ} \\
& \therefore \theta=140^{\circ},-160^{\circ}
\end{aligned}
$$

Example Solve the following equations

(i) $\cos x=0.3$ for $0<x<360$, answers correct to 2 d.p.
(ii) $\tan \frac{x}{2}=\sqrt{3}$ for $0<x<360$, answers in exact form
(i) $\cos x=0.3$.

$$
x=75.5,287.5
$$

(ii) $\tan \frac{x}{2}=\sqrt{3} \ldots$ solve first for $0<x<360$

$$
\begin{aligned}
& \frac{x}{2}=60^{\circ}, 240^{\circ} \\
& \therefore x=120^{\circ} \\
& \hline
\end{aligned}
$$

- Matrices

1. Multiplying matrices

In general

$$
\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)\binom{x}{y}=\binom{a x+b y}{c x+d y}
$$

A 2×2 matrix multiplied by a 2×1 gives a 2×1 matrix

$$
\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)\left(\begin{array}{ll}
w & x \\
y & z
\end{array}\right)=\left(\begin{array}{ll}
a w+b y & a x+b z \\
c w+d y & c x+d z
\end{array}\right)
$$

A 2 by 2 matrix multiplied by a 2 by 2 gives a 2 by 2 matrix
Example If $A=\left(\begin{array}{cc}-1 & 3 \\ 2 & 1\end{array}\right)$ and $B=\left(\begin{array}{rr}2 & 0 \\ -1 & 3\end{array}\right)$

$$
\begin{array}{lll}
\text { Work out } & \text { (i) } A B & \text { (ii) } A A
\end{array}
$$

(i)

$$
\begin{aligned}
A B & =\left(\begin{array}{cc}
-1 & 3 \\
2 & 1
\end{array}\right)\left(\begin{array}{rr}
2 & 0 \\
-1 & 3
\end{array}\right) \\
& =\left(\begin{array}{rr}
-5 & 9 \\
3 & 3
\end{array}\right)
\end{aligned}
$$

Worked out by the sum $-1 \times 2+3 x-1$
(ii) $\quad A A=\left(\begin{array}{cc}-1 & 3 \\ 2 & 1\end{array}\right)\left(\begin{array}{rr}-1 & 3 \\ 2 & 1\end{array}\right)$

$$
=\left(\begin{array}{ll}
7 & 0 \\
0 & 7
\end{array}\right)
$$

Example Find the values of a and b when

$$
\left(\begin{array}{cc}
-2 & -3 \\
3 & 5
\end{array}\right)\binom{a}{b}=\binom{5}{-2}
$$

From the first row $\quad-2 a-3 b=5$
From the $2^{\text {nd }}$ row $\quad 3 a+5 b=-2$
Now solve simultaneously

X5	$-10 a-15 b=25$
X3	$9 a+15 b=-6$
\therefore	$a=-19$
And	$-57+5 b=-2$
	$5 b=55$
	$b=11$

2. Multiplying a matrix by a number.

Example

Given $A=\left(\begin{array}{cc}-1 & 0 \\ 5 & 3\end{array}\right)$ work out $3 A$

$$
\begin{aligned}
3 A & =3\left(\begin{array}{cc}
-1 & 0 \\
5 & 3
\end{array}\right) \\
& =\left(\begin{array}{cc}
-3 & 0 \\
15 & 9
\end{array}\right)
\end{aligned}
$$

Each element in the matrix is multiplied by the constant 3.
3. Using matrices for transformations

Example

Which transformation is equivalent to a reflection in the x-axis?

$$
B\binom{0}{1} \rightarrow B^{\prime}\binom{0}{-1}
$$

$$
\text { Hence }\binom{x^{\prime}}{y^{\prime}}=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)\binom{x}{y}
$$

Again drawing the unit square and looking at where $A(1,0)$ and $B(0,1)$ moves to will help identify this matrix.

$$
\begin{aligned}
& A\binom{1}{0} \rightarrow A^{\prime}\binom{0}{-1} \\
& B\binom{0}{1} \rightarrow B^{\prime}\binom{-1}{0}
\end{aligned}
$$

\therefore A reflection in the line $y=-x$
4. Combinations of transformations.
M represents the transformation given by $\left(\begin{array}{cc}0 & -1 \\ -1 & 0\end{array}\right)$
N represents the transformation given by $\left(\begin{array}{cc}-1 & 0 \\ 0 & 1\end{array}\right)$
a) Describe matrix M.
b) Describe matrix N .
c) Find the single transformation for the transformation MN and its description.
a)

Hence M represents a reflection in $y=-x$

Hence N represents a reflection in the y axis
c) $M N=\left(\begin{array}{cc}-1 & 0 \\ 0 & 1\end{array}\right)\left(\begin{array}{cc}0 & -1 \\ -1 & 0\end{array}\right)$
$M N=\left(\begin{array}{cc}0 & 1 \\ -1 & 0\end{array}\right)$

Hence MN represents a rotation of 90° clockwise centre $(0,0)$

Page 33

Notes

Page 34

Notes

Page 35

Notes

