Mathematics Algebra Revision Booklet

Year 7

Thomas Whitham Sixth Form
S J Cooper

Collection of like terms
Multiplication
Solving equations
Substituting into formulae
\#Construction of equations
\$ Sequences, Number patterns

* Coordinates
\# Drawing straight line graphs
Removal of brackets

1. Collection of like terms

Examples

$$
\begin{aligned}
& 7 a+3 a=10 a \\
& 7 a-3 a=4 a \\
& 2 a+3 b-a+5 b=a+8 b \\
& 4 x+y-2 x+3 y=2 x+4 y
\end{aligned}
$$

2. Multiplication

Examples

$$
\begin{aligned}
& 2 \times a=2 a \\
& a \times a=a^{2} \\
& 2 a \times 3 b=6 a b \\
& x \times x \times x=x^{3} \\
& 4 y \times 6 y=24 y^{2}
\end{aligned}
$$

3. Solving equations

Example

$$
\begin{aligned}
x+7 & =12 \\
x & =5
\end{aligned}
$$

Example

$$
\begin{aligned}
5 a & =20 \\
a & =4
\end{aligned}
$$

Example

$$
5 x=2
$$

$$
x=\frac{2}{5}
$$

Example $\quad 2 x+1=7 \quad$ \{letters on one side, numbers on the other\}

$$
2 x=7-1 \quad\{\text { take } 1 \text { from each side }\}
$$

$$
2 x=6 \quad\{\text { divide both sides by } 2\}
$$

$$
x=3
$$

Example $\quad 2 y+4 y+6-3=15$
\{firstly collect together like terms\}

$$
\begin{aligned}
6 y+3 & =15 & & \\
6 y & =15-3 & & \text { \{take } 3 \text { from each side }\} \\
6 y & =12 & & \text { \{divide both sides by } 6\} \\
y & =2 & &
\end{aligned}
$$

```
Example
\[
\begin{array}{rlr}
6 x-5 & =2 x+7 \\
6 x-2 x & =7+5 & \text { \{firstly collect together like terms }\} \\
4 x & =12 & \text { \{take } 2 x \text { from each side and add } 5 \text { to each side }\} \\
x & =3 & \\
\text { \{divide both sides by } 4\}
\end{array}
\]
```


4. Substituting into formulae

Example The formula $P=2 l+2 b$ gives the perimeter of a rectangle of length l and breadth b. Calculate the perimeter if the length $l=5 \mathrm{~cm}$ and the breadth $b=2 \mathrm{~cm}$.

$$
\begin{aligned}
P=2 l+2 b & \text { if } l=5 \text { and } b=2 \\
& 2 l=10 \text { and } 2 b=4
\end{aligned}
$$

$\therefore \quad P=10+4=14 \mathrm{~cm}$

Example

(i) Find a formula for the perimeter, P of the triangle.
(ii) Find the perimeter if $x=3 \mathrm{~cm}$
(i) $\quad P=4 x+3 x+5 x \quad \therefore P=12 x$
(ii) If $x=3 \quad P=12 \times 3=36 \mathrm{~cm}$

Example What number is

(i)	less than x ?	Answer $=x-5$
(ii)	p more than 5 ?	Answer $=p+5$
(iii)	4 times as big as y ?	Answer $=4 y$

5. Constructing equations

Example If G is the number of girls in a class and B is the number of boys, write down a formula for the total number, T, of children in the class.

$$
\therefore T=G+B
$$

Example

The Side of a square is $l \mathrm{~cm}$ long. Write down a formula for A, the area of the square.

6. Construction and solution of equations

Example

I think of a number, multiply by 4 and subtract 8 . The result is 20 . What is the number?

Let the number be x
Then $\quad 4 x-8=20 \quad$ \{multiply by 4 and subtract 8 \}
$\therefore \quad 4 x=20+8$
$\therefore \quad 4 x=28$
$\therefore \quad x=7$
\therefore The number first thought of is 7 .

Example The sides of a rectangle are $x \mathrm{~cm}$ and 3 cm . Its perimeter is 24 cm . Find x.

\therefore The perimeter is $x+3+x+3=24$

$$
\begin{aligned}
2 x+6 & =24 \\
2 x & =24-6 \\
2 x & =18 \\
x & =9
\end{aligned}
$$

7. Sequences, Number patterns

The following sequence illustrates triangular numbers
0

The following sequence illustrates Square numbers

$1,4, \quad 9, \quad 16, \quad$ etc.

The following sequence are odd numbers
The following sequence are even numbers
The following sequence are powers of 2
$1,3,5,7,9,11,13$,
$2,4,6,8,10,12,14$ \qquad
$2,4,8,16,32,64,128$,

Example
Consider the following sequence

$$
1,4,7,10, \ldots
$$

(i) What is the $5^{\text {th }}$ term?
(ii) What is the $10^{\text {th }}$ term?
(iii) Describe the sequence in words.
(i) Next one in the sequence is the $5^{\text {th }}$ term which is 13
(ii) The $10^{\text {th }}$ term in the sequence is 28
(iii) To obtain the next term in the sequence add 3 to the last number in the sequence.

Example Find the first 5 terms for the sequence $V_{n}=7 n-3$

$$
\begin{aligned}
& V_{1}=7(1)-3=4 \\
& V_{2}=7(2)-3=11 \\
& V_{3}=7(3)-3=18 \\
& V_{4}=7(4)-3=25 \\
& V_{5}=7(5)-3=32 \\
& \therefore 4,11,18,25,32
\end{aligned}
$$

Example \quad Find the first 4 terms for the sequence $V_{n}=n \times(n+2)$

$$
\begin{aligned}
& V_{1}=1 \times(1+2)=1 \times 3=3 \\
& V_{2}=2 \times(2+2)=2 \times 4=8 \\
& V_{3}=3 \times(3+2)=3 \times 5=15 \\
& V_{4}=4 \times(4+2)=4 \times 6=24 \\
& V_{5}=5 \times(5+2)=5 \times 7=35
\end{aligned}
$$

$\therefore 3,8,15,24,35$
8. Coordinates

The numbers $(3,5)$ is referred to as the coordinate of A
The first number, 3 , is called the x-coordinate of A.
The second number, 5 , is called the y-coordinate of A.
The coordinate of point B is given by $(8,3)$
The origin is the coordinate $(0,0)$

Negative coordinates

The y-coordinate of point D is written -2 and is called "negative 2 "
The x-coordinate of point E is written -3 and is called "negative 3 "
9. Drawing straight line graphs

Example

a) Copy and complete the table below for the equation $y=4 x-1$

b) Draw the graph of $y=4 x-1$
a)

b)

10. Removal of brackets

Example \quad Remove the bracket $4(a+7)$
This can be attempted in the same way that you perform multiplication as shown below
a 7
4 4a 28

Hence $4(a+7)=4 a+28$

Example Remove the brackets for each of the following and simplify where possible
(i) $3(2 x-5)$
(ii) $7(3 x+2)$
(iii) $\quad x(3 x+2)$
(iv) $2 p(5 q-3 p+1)$

Alternatively we can make use of the fact that when removing any bracket we multiply everything inside the bracket by the quantity outside the bracket.
(i) $3(2 x-5)=6 x-15$
(ii) $7(3 x+2)=\underline{21 x+14}$
(iii) $\quad x(3 x+2)=3 x^{2}+2 x$
(iv) $2 p(5 q-3 p+1)=10 p q-6 p^{2}+2 p$

