The Binomial expansion

Where n is a positive integer.
$(1+x)^{n}=1+n x+\frac{n(n-1)}{2!} x^{2}+\frac{n(n-1)(n-2)}{3!} x^{3}+\ldots$

Gives as many terms of the expansion as may be required.
This may be adopted to expansions such as $(a+b)^{n}$ since its coefficients will be identical to those of $(1+x)^{n}$

Example

Expand $(1+x)^{10}$ as far as the fifth term

$$
\begin{aligned}
(1+x)^{10} & =1+(10)(x)+\frac{(10)(9)}{2!}(x)^{2}+\frac{(10)(9)(8)}{3!}(x)^{3}+\frac{(10)(9)(8)(7)}{4!}(x)^{4}+\ldots \\
& =1+10 x+45 x^{2}+120 x^{3}+210 x^{4}+\ldots
\end{aligned}
$$

Example

Expand $(2-x)^{5}$

$$
\begin{aligned}
(2-x)^{5} & =2^{5}\left(1-\frac{x}{2}\right)^{5} \\
& =32\left\{1+(5)\left(-\frac{x}{2}\right)+\frac{(5)(4)}{2!}\left(-\frac{x}{2}\right)^{2}+\frac{(5)(4)(3)}{3!}\left(-\frac{x}{2}\right)^{3}+\frac{(5)(4)(3)(2)}{4!}\left(-\frac{x}{2}\right)^{4}+\frac{(5)(4)(3)(2)(1)}{5!}\left(-\frac{x}{2}\right)^{5}\right\} \\
& =32\left\{1-\frac{5}{2} x+\frac{5}{2} x^{2}-\frac{5}{4} x^{3}+\frac{5}{16} x^{4}-\frac{1}{32} x^{5}\right\} \\
& =32\left\{32-80 x+80 x^{2}-40 x^{3}+10 x^{4}-x^{5}\right\}
\end{aligned}
$$

Example

Expand as far as the term in x^{3}

$$
\begin{aligned}
& (1-2 x)^{5}(1+2 x)^{7} \\
(1-2 x)^{5}= & 1+(5)(-2 x)+\frac{(5)(4)}{2!}(-2 x)^{2}+\frac{(5)(4)(3)}{3!}(-2 x)^{3}+\ldots \\
= & 1-10 x+40 x^{2}-80 x^{3}+\ldots \\
(1+2 x)^{7}= & 1+(7)(2 x)+\frac{(7)(6)}{2!}(2 x)^{2}+\frac{(7)(6)(5)}{3!}(2 x)^{3}+\ldots \\
= & 1+14 x+84 x^{2}+280 x^{3}+\ldots
\end{aligned}
$$

$$
(1-2 x)^{5}(1+2 x)^{7}=\left(1-10 x+40 x^{2}-80 x^{3}+\ldots\right)\left(1+14 x+84 x^{2}+280 x^{3}+\ldots\right)
$$

$$
=1+4 x-16 x^{2}-80 x^{3}+\ldots
$$

Example

a) Write down the expansion of $(1+x)^{7}$ in ascending powers of x up to and including the term in x^{3}.
b) Hence determine the value of 1.00001^{7} correct to 15 decimal places.

$$
(1+x)^{7}=1+7 x+21 x^{2}+35 x^{3}+\ldots
$$

$x=0.00001$
$1.00001^{7}=1+0.00007+0.0000000021+0.000000000000035$
$=1.000070002100035$

