Example

Express as a single fraction $\frac{3}{(x+2)}+\frac{2}{(x-1)}$

Here the common denominator is $(x+2)(x-1)$
Denominator of $1^{\text {st }}$ fraction is multiplied by $(x-1)$, hence multiply numerator by $(x-1)$

$$
\begin{aligned}
\frac{3}{(x+2)}+\frac{2}{(x-1)} & =\frac{3(x-1)+2(x+2)}{(x+2)(x-1)} \\
& =\frac{3 x-3+2 x+4}{(x+2)(x-1)} \\
& =\frac{5 x+1}{(x+2)(x-1)}
\end{aligned} \begin{aligned}
& \text { Denominator of } 2^{\text {nd }} \text { fraction is multiplied by } \\
& (x+2), \text { hence multiply numerator by }(x+2)
\end{aligned}
$$

Hence if we can take two fractions, or more, and write them as a single term. Then we must be able to perform the operation in reverse. This is known as placing a function as a sum of PARTIAL FRACTIONS

Partial Fractions

Rule: for each unrepeated linear factor $(a x+b)$ in the denominator there will correspond a partial fraction $\frac{P}{(a x+b)}$

Example

Express in partial fractions $\frac{3 x}{(2 x-1)(x+1)}$
$\frac{3 x}{(2 x-1)(x+1)}=\frac{A}{(2 x-1)}+\frac{B}{(x+1)}$

For some constant A and B.
By clearly the denominator we can use our identities, as the left hand side (LHS) must equate to the right hand side (RHS)

$$
\begin{aligned}
\frac{3 x}{(2 x-1)(x+1)} & =\frac{A}{(2 x-1)}+\frac{B}{(x+1)} \\
3 x & =A(x+1)+B(2 x-1)
\end{aligned}
$$

Look at the x.

$$
\begin{gathered}
3=A+2 B \\
0=A-B \\
\therefore A=B
\end{gathered}
$$

Hence solving using simultaneous equations

$$
\begin{aligned}
& 3=A+2 B \\
& 3=3 A \\
& A=1=B
\end{aligned}
$$

$\frac{3 x}{(2 x-1)(x+1)}=\frac{1}{(2 x-1)}+\frac{1}{(x+1)}$

Example

Express $f(x)=\frac{1+2 x}{(2+x)(1-x)}$ in partial fractions
Hence (i) Evaluate

$$
\int_{2}^{3} \frac{1+2 x}{(2+x)(1-x)} d x
$$

(ii) Express $f(x)$ as a power series in x as far as the term in x^{3} and give the range of convergence in the series.

$$
\begin{aligned}
\frac{1+2 x}{(2+x)(1-x)} & =\frac{A}{(2+x)}+\frac{B}{(1-x)} \\
1+2 x & =A(1-x)+B(2+x)
\end{aligned}
$$

Look at the x.

$$
2=-A+B
$$

Look at the constant

$$
1=A+2 B
$$

Hence solving using simultaneous equations

$$
\begin{aligned}
3 & =3 B \\
B & =1 \\
A & =1-2=-1 \\
\frac{1+2 x}{(2+x)(1-x)}=-\frac{1}{(2+x)}+\frac{1}{(1-x)} &
\end{aligned}
$$

(i)

$$
\begin{aligned}
\int_{2}^{3} \frac{1+2 x}{(2+x)(1-x)} d x & =\int_{2}^{3}-\frac{1}{(2+x)}+\frac{1}{(1-x)} d x \\
& =[--\ln (2+x)--\ln (1-x)]_{2}^{3} \\
& =(-\ln (5)-\ln (-2))-(-\ln (4)-\ln (-1)) \\
& =\ln 4-\ln 5-\ln 2 \\
& =\ln \left(\frac{2}{5}\right)
\end{aligned}
$$

(ii)

$$
\begin{aligned}
-\frac{1}{(2+x)} & =-\frac{1}{2}\left(1+\frac{x}{2}\right)^{-1} \\
& =-\frac{1}{2}\left\{1+(-1)\left(\frac{x}{2}\right)+\frac{(-1)(-2)}{2!}\left(\frac{x}{2}\right)^{2}+\frac{(-1)(-2)(-3)}{3!}\left(\frac{x}{2}\right)^{3}\right\} \\
& =-\frac{1}{2}\left\{1-\frac{x}{2}+\frac{x^{2}}{4}-\frac{x^{3}}{8}\right\} \\
& =-\frac{1}{2}+\frac{x}{4}-\frac{x^{2}}{8}+\frac{x^{3}}{16} \\
\frac{1}{(1-x)} & =(1-x)^{-1} \\
& =1+(-1)(-x)+\frac{(-1)(-2)}{2!}(-x)^{2}+\frac{(-1)(-2)(-3)}{3!}(-x)^{3} \\
& =\underline{\underline{1+x+x^{2}+x^{3}}}
\end{aligned}
$$

$$
\begin{aligned}
\therefore \frac{1+2 x}{(2+x)(1-x)} & =-\frac{1}{(2+x)}+\frac{1}{(1-x)} \\
& =\frac{1}{2}+\frac{5}{4} x+\frac{7}{8} x^{2}+\frac{17}{16} x^{3}
\end{aligned}
$$

The expression is valid for $|x|<1$

