Numerical Methods Newton Raphson method

A better solution would therefore be at x_2 .

$$\tan\theta = m = f'(x)$$

$$x_2 = x_1 - \frac{f(x)}{f'(x)}$$

Example

Show that the equation $e^x = 2 - x$ has only one real root and find its value using the Newton Raphson method correct to three decimal places.

$$e^{x} + x - 2 = 0$$

$$\therefore f(x) = e^{x} + x - 2$$

$$\therefore f'(x) = e^{x} + 1$$

$$x_{0} = 1$$

$$x_{1} = x_{0} - \frac{f(x_{0})}{f'(x_{0})}$$

$$= x_{0} - \frac{(e^{x_{0}} + x_{0} - 2)}{(e^{x_{0}} + 1)} = 0.5378828...$$

$$x_{2} = 0.445616748$$

$$x_{3} = 0.44285672$$

$$x_{4} = 0.44285672$$

$$x_{4} = 0.44285440$$

$$f(0.4435) = e^{0.4435} + 0.4435 - 2 = 1.65 \times 10^{-3}$$

$$f(0.4425) = e^{0.4425} + 0.4425 - 2 = -9.0 \times 10^{-4}$$
Change in sign $\Rightarrow x = 0.443$ to 3 d.p.

<u>Example</u>

Show that the equation $2\sin x = x$ has a root between x = 1 and x = 2. Find the root correct to three significant figures.

 $2\sin x - x = 0$ $\therefore f(x) = 2\sin x - x$ $f(1) = 2\sin(1) - 1 = 0.68$ $f(2) = 2\sin(2) - 2 = 0. - 0.18$

Change in sign \Rightarrow Solution lies between x = 1 and x = 2

 $\therefore f(x) = 2\sin x - x$ $\therefore f'(x) = 2\cos x - 1$

 $x_0 = 1.5$

 $x_{1} = x_{0} - \frac{(2\sin x_{0} - x_{0})}{(2\cos x_{0} - 1)} = 2.07655...$ $x_{2} = 1.9105066$ $x_{3} = 1.895622003$ $x_{4} = 1.895494276$ $f(1.905) = 2\sin(1.905) - 1.905 = -0.0156$ $f(1.895) = 2\sin(1.895) - 1.895 = 8.09 \times 10^{-4}$

Change in sign $\Rightarrow x = 1.90$ to 3 s.f.

Example

Using Newton's method find correct to four decimal places $\sqrt[3]{3}$

Let $x = \sqrt[3]{3}$ $x^{3} = 3$ $x^{3} - 3 = 0$ $\therefore f(x) = x^{3} - 3$ $\therefore f'(x) = 3x^{2}$ $x_{1} = x_{0} - \frac{(x_{0}^{3} - 3)}{(3x_{0}^{2})} = 1.444444...$ $x_{2} = 1.4422529$ $x_{3} = 1.44224957$ $x_{4} = 1.44224957$ $\Rightarrow x = 1.4422 \text{ to } 4\text{d.p.}$

Example

Sketch the curve with equation $y = e^x$ and on the same axes draw an appropriate line to show that the equation $e^x + x - 3 = 0$ has exactly one root α .

- a) Prove that α lies between 0.7 and 0.8.
- b) Taking 0.8 as a first approximation to α , use the Newton-Raphson method once to obtain a second approximation to α , giving your answer to three decimal places.
- c) Show that the equation $e^x + x 3 = 0$ can be arranged in the form $x = \ln(f(x))$

Use the iteration of the form $x_{n+1} = g(x_n)$ based on this rearrangement with $x_1 = 0.8$ to find the values of x_2 and x_3 , giving your answers to three decimal places.

e) Using differentiation show that this iterative formula is convergent.