## Numerical Methods Newton Raphson method



A better solution would therefore be at $x_{2}$.

$$
\begin{aligned}
& x_{2}=x_{1}-d \\
& d=\frac{f(x)}{\tan \theta}
\end{aligned}
$$


$f(x)$
$\tan \theta=m=f^{\prime}(x)$

$$
x_{2}=x_{1}-\frac{f(x)}{f^{\prime}(x)}
$$

## Example

Show that the equation $e^{x}=2-x$ has only one real root and find its value using the Newton Raphson method correct to three decimal places.

$$
\begin{array}{l|r} 
& e^{x}+x-2=0 \\
\therefore f(x)=e^{x}+x-2 \\
\therefore f^{\prime}(x)=e^{x}+1 \\
& x_{0}=1 \\
& =x_{0}-\frac{\left(e^{x_{0}}+x_{0}-2\right)}{\left(e^{x_{0}}+1\right)}=0.5378828 \ldots \\
x_{2}=0.445616748 \\
x_{3} & =0.44285672 \\
x_{4} & =0.44285440 \\
f(0.4435) & =e^{0.4435}+0.4435-2=1.65 \times 10^{-3} \\
f(0.4425) & =e^{0.4425}+0.4425-2=-9.0 \times 10^{-4}
\end{array}
$$

Change in sign $\Rightarrow x=0.443$ to 3 d.p.

## Example

Show that the equation $2 \sin x=x$ has a root between $\mathrm{x}=1$ and $x=2$. Find the root correct to three significant figures.

$$
\begin{aligned}
& \quad 2 \sin x-x=0 \\
& \therefore f(x)=2 \sin x-x \\
& f(1)=2 \sin (1)-1=0.68 \\
& f(2)=2 \sin (2)-2=0 .-0.18 \\
& \text { Change in sign } \Rightarrow \text { Solution lies } \\
& \text { between } x=1 \text { and } x=2 \\
& \therefore f(x)=2 \sin x-x \\
& \therefore f^{\prime}(x)=2 \cos x-1 \\
& x_{0}=1.5
\end{aligned}
$$

$$
\begin{aligned}
& x_{1}=x_{0}-\frac{\left(2 \sin x_{0}-x_{0}\right)}{\left(2 \cos x_{0}-1\right)}=2.07655 \ldots \\
& x_{2}=1.9105066 \\
& x_{3}=1.895622003 \\
& x_{4}=1.895494276 \\
& f(1.905)=2 \sin (1.905)-1.905=-0.0156 \\
& f(1.895)=2 \sin (1.895)-1.895=8.09 \times 10^{-4}
\end{aligned}
$$

Change in sign $\Rightarrow x=1.90$ to 3 s.f.

## Example

Using Newton's method find correct to four decimal places $\sqrt[3]{3}$

$$
\begin{aligned}
\text { Let } \quad x & =\sqrt[3]{3} \\
x^{3} & =3 \\
x^{3}-3 & =0 \\
\therefore f(x) & =x^{3}-3 \\
\therefore f^{\prime}(x) & =3 x^{2}
\end{aligned}
$$

$$
\begin{aligned}
x_{0} & =1.5 \\
x_{1} & =x_{0}-\frac{\left(x_{0}^{3}-3\right)}{\left(3 x_{0}^{2}\right)}=1.444444 \ldots \\
x_{2} & =1.4422529 \\
x_{3} & =1.44224957 \\
x_{4} & =1.44224957 \\
\Rightarrow x & =1.4422 \text { to } 4 \text { d.p. }
\end{aligned}
$$

## Example

Sketch the curve with equation $y=e^{x}$ and on the same axes draw an appropriate line to show that the equation $e^{x}+x-3=0$ has exactly one root $\alpha$.
a) Prove that $\alpha$ lies between 0.7 and 0.8 .
b) Taking 0.8 as a first approximation to $\alpha$, use the Newton-Raphson method once to obtain a second approximation to $\alpha$, giving your answer to three decimal places.
c) Show that the equation $e^{x}+x-3=0$ can be arranged in the form $x=\ln (f(x))$
Use the iteration of the form $x_{n+1}=g\left(x_{n}\right)$ based on this rearrangement with $x_{1}=0.8$ to find the values of $x_{2}$ and $x_{3}$, giving your answers to three decimal places.
e) Using differentiation show that this iterative formula is convergent.

