Equation of a circle through (a, b) with radius r

$$
(x-a)^{2}+(y-b)^{2}=r^{2}
$$

Example

Show that the equation $x^{2}+y^{2}-2 x+4 y-4=0$ represents a circle and find its centre and radius.

This can be solved by completing the square twice!
Once for the terms in x and once for the terms in y.

$$
\begin{aligned}
& x^{2}+y^{2}-2 x+4 y-4=0 \\
& \left(x^{2}-2 x+1^{2}\right)+\left(y^{2}+4 y+2^{2}\right)=4+1^{2}+2^{2} \\
& (x-1)+(y+2)^{2}=9
\end{aligned}
$$

Hence a circle with centre ($1,-2$) and radius 3 .

Example

Find the equation the circle with centre $(-2,4)$ and radius 4.
Using $(x-a)^{2}+(y-b)^{2}=r^{2}$
We can write the answer straight away!

$$
(x+2)^{2}+(y-4)^{2}=16
$$

Angles between a tangent and its radius is always 90°

To find the equation of a tangent at a specific point on a circle, find the gradient of the radius, then the gradient of the tangent and use $y-y_{1}=m\left(x-x_{1}\right)$

Example

Find the equation of the tangent to the circle $x^{2}+y^{2}=13$ at the point $(2,-3)$

Gradient of the radius $=\frac{-3-0}{2-0}=-\frac{3}{2}$
Therefore gradient of tangent $=\frac{2}{3}$
Equation of the tangent

$$
\begin{aligned}
y-y_{1} & =m\left(x-x_{1}\right) \\
y+3 & =\frac{2}{3}(x-2) \\
3 y+9 & =2 x-4 \\
3 y & =2 x-13
\end{aligned}
$$

Example

Find the points of intersection of the circle $x^{2}+y^{2}=20$ with the line $y=3 x-2$
Here the best way to solve is using simultaneous equations

$$
\begin{aligned}
x^{2}+y^{2} & =20 \\
x^{2}+(3 x-2)^{2} & =20 \\
x^{2}+9 x^{2}-12 x+4 & =20 \\
10 x^{2}-12 x-16 & =0
\end{aligned}
$$

We can simplify this a little further and then use factorisation!!
$10 x^{2}-12 x-16=0$
$5 x^{2}-6 x-8=0$
$(5 x+4)(x-2)=0$
So $x=2$ or $x=-\frac{4}{5}$
$x=2$ means $y=3 \times 2-2=4$ so crosses at $(2,4)$
$x=-\frac{4}{5}$ means $y=3 \times-\frac{4}{5}-2=-\frac{22}{5}$ so crosses at $\left(-\frac{4}{5},-\frac{22}{5}\right)$

Example

Find the equation of the circle centre $(-2,4)$ which touches the y axis.
Diagram will make this question much simpler

In order to touch the y a ais the radius must be 2 units! Think about it..

Therefore $(x+2)^{2}+(y-4)^{2}=4$

Example

AB is a tangent at B to the circle with centre C and equation $(x-2)^{2}+(y-2)^{2}=25$. The point A has coordinate (10,8). Find the area of the triangle $A B C$

Start by drawing a sketch of the circle given and the information we know.

The length AC is obtained from the sketch above using the formula $\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}$
$A C=\sqrt{(10-2)^{2}+(8-2)^{2}}=\sqrt{8^{2}+6^{2}}=10$
Using Pythagoras theorem.
$\mathrm{AB}=\sqrt{10^{2}-5^{2}}=\sqrt{75}=5 \sqrt{3}$

Using formula for area of triangle half base times height.

Hence Area of triangle $=\frac{1}{2} \times 5 \times 5 \sqrt{3}=\frac{25 \sqrt{3}}{2}$

1. A level past paper question

The points $(8,4)$ and $(2,2)$ are the ends of the diameter of a circle C.
a) Find the equation of C.
b) Find the equation of the tangent to C at the point $(8,4)$

2. A level past paper question

The circle with centre C has equation

$$
x^{2}+y^{2}+6 x-8 y=0
$$

a) Find the radius of the circle and the coordinates of C .
b) The line $y=x+6$ intersects the circle at the points P and Q.

Calculate the length PQ .

